

Institut für Thermische Verfahrenstechnik (TVT) Kaiserstraße 12 76131 Karlsruhe www.tvt.kit.edu

# Spektroskopische Untersuchungen des Kristallwachstums von mehrkomponentigen, wässrigen Elektrolytsystemen

**Christoph Helfenritter, Andreas Roth, Matthias Kind** 

| Einführung und Modellvorstellung                                       |                          |
|------------------------------------------------------------------------|--------------------------|
| Motivation                                                             | Theoretische Betrachtung |
| Welche Komponenten kristallisieren an<br>vorgegebenen Oberflächen aus? | Übersättigung führt zu   |

- vorgegebenen Obernachen aus:
- Liegen Limitierungen vor?
- Vorhersage der Prozesse im Phasengleichgewichtsdiagramm
- Unterkühlung einer eutektischen Lösung von 25 auf 20 °C



Kristallwachstum Limitierung durch Diffusion oder Einbau Konzentrationsprofile bilden sich in Lösung aus



**Diffusionsgleichung nach Einstein:** 

 $\langle z \rangle^2 = D_i \cdot t_{char} \rightarrow D_i \approx 10^{-8} - 10^{-9} \frac{m^2}{s} \rightarrow t_{char} < 20 s$  (für 200 µm Film)

Filmtheorie zur Beschreibung der Konzentrationsverläufe:  $x_{Ph,i}^{L} = x_{\infty,i}^{L} + \left(x_{\infty,i}^{L} - x_{i}^{S}\right) \cdot \frac{G}{k_{ii}}, i \neq j$ 

## Methodenentwicklung

### **Experimenteller Aufbau**

- Raman Spektroskopie ermöglicht quantitative Untersuchung
- Hohe Ortsauflösung durch inverse konfokale Raman



#### **Spektrenaufnahme und Interpretation**





- Vorlage verschiedener Substrate möglich
- Gezieltes Inkontaktbringen von Substrat und Flüssigkeit
- Temperierung der Messzelle  $\rightarrow$  Übersättigungseinstellung durch Temperaturvariation

#### Abwägung zwischen örtlicher und zeitlicher Auflösung

# Auswertung und Ausblick

## Konzentrationsverläufe



- Gleichgewichtseinstellung
  - Entwicklung unterschiedlicher Gleichgewichtszustände
  - Einstellung eines metastabilen Zustands für ein Natriumsulfat-
  - Bildung einer Lösung mit eutektischer Zusammensetzung

www.kit.edu

M.Sc. Christoph Helfenritter

E-Mail: helfenritter@kit.edu Tel.: 0721-608-45749

Referenzen

<sup>1</sup> W.A. Caspari, The system sodium carbonate–sodium sulphate–water (1924)

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft